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Nonlinear stress- strain relations are derived for the viscoelastic behavior of glassy 
polymers. An amorphous medium is treated as an ensemble of cooperatively rearranging 
regions (Row units). Any unit is thought of as a point in the phase space which hops 
(being thermally activated) to higher energy levels in its potential well on the energy 
landscape. The viscoelastic behavior of a polymer is modeled as a sequence of rear- 
rangement events occurring at random times when relaxing regions reach (in hops) some 
liquid-like level. We assume that external loads affect the position of the liquid-like state 
with respect to the energy landscape, and the descent of  the reference energy level is 
proportional to the average mechanical energy of a Row unit. This hypothesis is verified 
by comparison of observations for polycarbonate in tensile relaxation tests with results 
of numerical simulation. Fair agreement is demonstrated between experimental data 
and their predictions. 

Keyword:  Nonlinear viscoelasticity; Glassy polymers; Thermal activation 

1. INTRODUCTION 

The paper is concerned with the nonlinear viscoelastic behavior of 
amorphous glassy polymers at isothermal loading in the sub-yield 
region. This subject has attracted substantial attention in the past 
decade because of its applications in polymer engineering [I - 191. 
However, despite significant successes in the analysis of time-depend- 
ent response of amorphous media, it is difficult to mention a model 
that establishes plausible correlations between deformations at the 
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340 A. D. DROZDOV 

micro-level and material properties at the macro-level [20]. This 
may be explained by the insufficient knowledge of the influence of 
mechanical factors on the local rearrangement of long chains. 

Conventional concepts in nonlinear viscoelasticity of polymers are 
based on the time-stress and time-strain superposition principles 
[21] which presume that stresses (strains) accelerate the rearrange- 
ment process. The specific free volume [22,23] and the specific con- 
figurational entropy [24] are traditionally employed as measures of 
the activation. In spite of numerous applications of this approach 
to fit experimental data [ l ,  2,5,8- 111, its ability to correctly pre- 
dict the viscoelastic response remains questionable, because it fails to 
describe the following phenomena revealed in mechanical tests on 
glassy polymers: 

1. tensile and torsional relaxation curves at  strains in the sub-yield 
region plotted in double logarithmic coordinates cannot be super- 
posed with an acceptable accuracy by horizontal and vertical shifts 
[25,261; 

2. oscillation tests on stretched specimens demonstrate a pronounced 
decrease in the loss tangent with time when the samples are 
stretched with a constant rate of straining [27], as well as in creep 
and relaxation modes [25,28,29]. 

This implies that new constitutive equations should be developed 
which can predict the above observations. The characteristic feature of 
the model in search is that the rearrangement process is described by 
such a mechanical parameter that does not remain constant in tests 
with constant strains and stresses. 

In this study we attempt to derive stress-strain relations in non- 
linear viscoelasticity of polymers using the trapping concept [30 - 331. 
In agreement with the theory of cooperative relaxation, an amor- 
phous polymer is treated as an ensemble of mutually independent 
flow units. A unit is thought of as a globule consisting of scores of 
strands of long chains connected by attractive and repulsive forces 
between monomeric units and changing their positions simulta- 
neously. The evidence in favor of this picture is provided by measure- 
ments of dielectric relaxation and the Kerr effect in glass-forming 
liquids [30,34]. The characteristic length of a relaxing region in the 
vicinity of the glass transition temperature Tg amounts to several 
nanometers [35]. 
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AMORPHOUS GLASSY POLYMERS 341 

In the phase space, units are modeled as material points located 
at bottom levels of their potential wells. At random times, relaxing 
regions hop to higher energy levels being thermally activated, and, 
afterward, return to the initial positions. This scenario reflects the 
concept of ergodicity breaking [36], which states that below Tg flow 
units cannot change their traps. 

With reference to the transition-state theory [37], we assume that 
some liquid-like (reference) state exists on the energy landscape, 
where flow units change their configurations. When a unit reaches 
the liquid-like energy level in a hop, stresses totally relax because of 
rearrangement of strands. When the hop is short of the reference 
state, the relaxing region lands in its potential well without changes. 
The viscoelastic behavior of an amorphous polymer is modeled as 
sequential rearrangement of relaxing regions. 

The novelty of our approach is that the reference energy level is 
permitted to change its position with respect to the energy landscape. It 
is assumed that external loads cause a descent of the liquid-like level 
(compared to its position in a stress-free medium) which is proportional 
to the current average mechanical energy of a polymer. Based on this 
hypothesis, we fit (with a high level of accuracy) relaxation curves for 
polycarbonate at strains up to 7 percent, when standard methods of 
superposition fail to match observations. 

The exposition is organized as follows. Section 2 deals with gov- 
erning equations for rearrangement of flow units. Constitutive equa- 
tions for amorphous glassy polymers are derived in Section 3. The 
stress-strain relations are applied to fit experimental data in Sec- 
tion 4. Some concluding remarks are formulated in Section 5. 

2. KINETICS OF REARRANGEMENT 
OF FLOW UNITS 

An amorphous polymer is treated as an ensemble of cooperatively 
rearranging regions with various energies. In the phase space, a 
region is modeled as a point located at the bottom level of its poten- 
tial well. The depth of the potential well with respect to the refer- 
ence state of a stress-free medium is determined by potential energy 
w. For definiteness, we set w=O for the initial reference state and 
w > 0 for an arbitrary flow unit. 
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342 A. D. DROZDOV 

Denote by Eo the (time-uniform) concentration of cages per unit 
mass of the bulk medium and by E(t, T ,  w) the current (at time t )  
concentration of traps with potential energy w which have rearranged 
for the last time before instant T 5 t. The function Z ( t ,  T ,  w) provides 
a detailed description of the rearrangement process: Z( t ,O ,  w) is the 
current concentration of traps with potential energy w where rear- 
rangement has not occurred; E ( t , t , w )  is the concentration of traps 
with energy w at time t ;  the quantity 

is the number of flow units in traps with energy w that reach the 
reference level within the interval [T, T + d ~ ] ;  and the amount 

is the number of these regions not rearranged within the interval 
[ ~ , t ] .  The number of initial flow units in traps with energy w rear- 
ranged within the interval [ t ,  t + dt] reads 

a; 
- - ( t ,  0 ,  w)dt ,  

at 

and the number of relaxing regions in traps with energy w that have 
rearranged for the last time within the interval [T, T + d7-] before 
reaching the reference state within the interval [t ,  t + dt] is given by 

Denote by q(w)dw the probability for a flow unit to reach in an ar- 
bitrary hop the energy level that exceeds the bottom level of its well 
by a value located in the interval [w, w + dw]. Referring to the extreme 
value statistics [38], we set 

q(w) = aexp(-aw), 
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AMORPHOUS GLASSY POLYMERS 343 

where a is a material constant. The probability to reach the reference 
state in a hop reads 

where R(t) is the descent energy of the liquid-like level a t  time t with 
respect to its position in a stress-free medium. Assuming the average 
rate of hops r to be constant and multiplying I? by the probability of 
reaching the liquid-like state in a hop Q ( t ,  w) ,  we arrive at  the analog 
of the Eyring formula [39] for the rate of rearrangement 

P ( t ,  w )  = Po(w)exp[-aR(t)], Po(w) = rexp(-au) .  (1) 

Equating the relative rates of rearrangement to the function P, we 
arrive at  the differential equations 

The function Z(r, T ,  w )  is connected with the probability density of 
traps p ( w )  by the formula 

The number of relaxing regions (per unit mass) located in traps with 
potential energies lying in the interval [w, w + dw] that rearrange per 
unit time equals 

z - J P ( t ,  w)p(w)dw. 

Since the duration of a hop (a few picoseconds [34,40]) is small com- 
pared to the characteristic time of relaxation in the a-region, hops are 
thought of as instantaneous. Neglecting the duration of a hop, we find 
that the same number of flow units land in their traps per unit time, 

LE 
= ZoP(7,  w ) p ( w ) .  (4) 
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344 A. D. DROZDOV 

The solutions of Eq. (2) with initial conditions (3) and (4) read 

E(t,O, w) = E:op(w) exp [ - 1' P ( S ,  w w ]  1 

( 5 )  
- 

dT ( t ,  T~ w )  = E#(T, w)p (w)  exp 

3. STRESS-STRAIN RELATIONS 

We study uniaxial deformation of a specimen when only one com- 
ponent E of the strain tensor does not vanish. Uniaxial constitutive 
relations may be extended to three-dimensional loading by conven- 
tional methods [15]. 

Because a flow unit totally relaxes when it reaches the liquid-like 
state, its natural (stress-free) configuration coincides with the actual 
configuration of the bulk medium at the instant of rearrangement. 
The nominal strain in the relaxing region (the strain from its natural 
configuration to the actual configuration at time t )  reads 

E O ( 4  7 )  = - &(TIl 

where T 5 t is the last instant when the region has rearranged. We 
assume that the mechanical energy of a flow unit U is independent of 
the depth of potential wells, 

u = U(EO(t, 711, 

where the function U(E) satisfies the conditions 

dU 
d& U ( 0 )  = 0, - (0) = 0. 

The specific mechanical energy (per unit mass) of initial flow units 
which have not rearranged during the interval [0, t )  is given by 

U ( & ( t ) )  Jrn E(t, 0, w)dw.  
0 

The specific mechanical energy of flow units rearranged within the in- 
terval [T,  T + d ~ ]  that have not returned to the liquid-like state until 
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AMORPHOUS GLASSY POLYMERS 345 

the current time t is calculated as 

Summing these expressions and neglecting the energy of interaction 
between relaxing regions, we find the specific mechanical energy of 
an amorphous polymer 

@ ( t )  = U(E(t)) Am E(t, 0, w)dw 

At small strains, the stress [T is expressed in terms of the specific me- 
chanical energy Q, by the formula 

where p is mass density in the stress-free state. Substitution of expres- 
sions ( 5 )  and (7) into this equality results in the stress-strain relation 

where 

dU 
dE 

V(E) = @0-(&). 

4. COMPARISON WITH EXPERIMENTS 

For the standard relaxation test with 

(9) 

0, t < 0, { &, t > 0, & ( t )  = 
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346 A. D. DROZDOV 

Equations ( 5 )  to (8) imply that 

where p is the average mechanical energy of a trap. 

cages is described by the Gaussian formula 
According to the random energy model [40], the distribution of 

where Wis the average depth of a potential well and c is the standard 
deviation of energies of wells. 

Our main hypothesis is that the descent energy of the liquid-like 
state R is proportional to the average mechanical energy (p, 

Q ( t )  = A d t ) ,  (12) 
where A is an adjustable parameter. Combining Eqs. (1) and (10) 
to (12), we arrive at  the nonlinear integral equation for the function 
Q,(t) = aR,  

where z = CYW, W, = cy W, c* = aC and 

It follows from Eqs. (1) and (10) that 
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AMORPHOUS GLASSY POLYMERS 347 

where E(t ,  E )  = u ( t ) / &  is the current Young modulus and 

" ( E l  ED(&) = -. 
& 

Given a strain E ,  Eqs. (13) and (14) are determined by 5 adjustable 
parameters: the quantities W, and C, determine the relaxation spec- 
trum (the distribution of traps with various depths), the constant is 
the rate of hops, and the amounts Eo and Uo characterize mechani- 
cal energies of individual flow units. It follows from the structure 
of Eqs. (13) and (14) that one of the quantities I? and W ,  may be cho- 
sen a priori, whereas the other is found by fitting observations. For 
definiteness, the value W, is fixed. 

We begin with observations in tensile relaxation tests for poly- 
carbonate at the temperature T= 50°C. For a detailed description of 
experimental procedure, see Ref. [26]. First, we match a relaxation 

....... . . . .  - r  n n *  "-..+....*3 " " -  - 1 t log E 

........ -.. 
2 ... .....-.. t 3 ....... - ..... 

.... ....-..._ 4 

5 

G 

7 
-0.2 

-1.0 log t 2.0 

FIGURE 1 The Young modulus E GPa versus time t min for uniaxial extension of 
polycarbonate at T= 50°C. Circles: experimental data [26]. Solid lines: prediction of the 
model. Curve 1 :  ~ = 0 . 0 0 7 ;  curve 2: ~ = 0 . 0 2 0 ;  curve 3: ~=0 .031;  curve 4: ~ ~ 0 . 0 4 2 ;  curve 
5: E = 0.047; curve 6: E = 0.052; curve 7: E = 0.0625. 
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FIGURE 2 The initial Young modulus E, GPa versus strain E for polycarbonate in 
tensile relaxation tests at T = 50°C. Circles: treatment of observations [26]. Solid line: 
approximation of experimental data by Eq. (16) with C0=2.01 and C ,  = 16.89. 

0.0 U 0,003 

FIGURE 3 The dimensionless quantity (io versus the energy u GPa for polycarbonate 
in tensile relaxation tests at T =  50°C. Circles: treatment of observations [26]. Solid line: 
approximation of experimental data by Eq. (17) with C=5747.97. 
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-0.5 log t 2.5 

FIGURE 4 The stress u MPa versus time t min for polycarbonate in tensile relaxation 
tests at 7'= -24°C. Circles: experimental data [25]. Solid lines: prediction of the model. 
Curve 1: ~=0.0185; curve 2: ~=0.0320; curve 3: ~=0.0508. 

r-- ---I 

3 
2 

1 

I I I I I 
-0 5 log t 2.5 

FIGURE 5 The stress cr MPd versus time t min for polycarbonate in tensile relaxation 
tests at  T=26"C. Circles: experimental data [25]. Solid lines: prediction of the model. 
Curve 1: ~=0.0185;  curve 2: ~=0.0320; curve 3: ~=0.0508.  
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350 A. D. DROZDOV 

curve measured in the region of linear viscoelasticity ( E  = 0.003), 
where changes in the position of the reference energy level may be 
neglected (O,=O). The parameters r and C* are found from the 
condition of the best fit of experimental data. Afterward, we fix 
the parameters r = 13.2 min-', W ,  = 24.0 and Cr = 8.46, and deter- 
mine the parameters U,(E) and &(&) which ensure the best approxi- 
mation of relaxation curves measured at various longitudinal strains E .  

The quantity Eo is found by the least-squares method, whereas the 
amount U,  is detected using the steepest-descent procedure. Observa- 
tions are plotted together with results of numerical simulations in 
Figure 1 which demonstrates that Eq. (14) correctly predicts experi- 
mental data. 

According to Figure 2, the dependence E,(E) is fairly well ap- 
proximated by the linear function 

I?,(&) = co - C1& 

I 

00 t 0.06 

FIGURE 6 The initial Young modulus E,j GPa versus strain E for polycarbonate in 
tensile relaxation tests at  temperature T"C. Circles: treatment of observations [25].  Solid 
line: approximation of experimental data by Eq. (16). Curve 1: T= -24, C0=2.52 and 
CI = 19.24, curve 2:  T= 26, Co= 2.54, C,  = 22.48. 
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AMORPHOUS GLASSY POLYMERS 351 

with adjustable parameters CO and CI. It follows from Eqs. (6), (9), 
(1 5) and (1 6) that 

(17) UO(&) = CU(&), U(&) = -C0E2  1 - -C1E 1 3  , 
2 3 

where C is a constant. Figure 3 evidences that Eq. (17) ensures ex- 
cellent agreement with observations. 

To illustrate that the model adequately describes the nonlinear 
viscoelastic response of polycarbonate at other temperatures, we repeat 
the calculations using experimental data adopted from Ref. [25]. 
Figures 4 and 5 show excellent correspondence between measurements 
and results of numerical simulation with r = 0.16 min-', W, = 20.0 and 
C* = 7.9. Figures 6 and 7 demonstrate that Eqs. (1 6) and (17) correctly 
predict mechanical energies of flow units 

15.0 

'0 

0.0 

0.0 U 0.003 

FIGURE 7 The dimensionless parameter Uo versus the energy uGPa for polycarbo- 
nate in tensile relaxation tests at temperature T"C. Circles: treatment of observations 
[25]. Solid line: approximation of experimental data by Eq. (17). Curve 1: T=-24, 
C=3441.04, curve 2: T=26, C=4359.36. 
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5. CONCLUSIONS 

Constitutive equations have been derived for the nonlinear viscoelastic 
response of amorphous glassy polymers at  isothermal loading. A dis- 
ordered medium is treated as an ensemble of flow units trapped in 
cages. In the phase space, relaxing regions are located at the bot- 
tom levels of their potential wells, and they hop (at random times) to 
higher energy levels because of thermal excitations. Rearrangement 
of a flow unit occurs when it reaches the liquid-like state in a hop. 

Unlike conventional models, we suppose that the position of the 
liquid-like level (with respect to the energy landscape) is not fixed, 
and it can move being driven by mechanical factors. The energy 
of descent of the reference level (compared to its position in a stress- 
free polymer) is proportional to the average mechanical energy per 
relaxing region. 

Time-dependent response of an amorphous polymer at uniaxial 
loading is described by two nonlinear integral equations for the cur- 
rent stress 0 and the current energy of a flow unit cp. An important 
advantage of Eqs. (13) and (14) is that they contain a small number of 
adjustable parameters (compared to conventional models in nonlin- 
ear viscoelasticity) which can be easily found by fitting observations. 

The stress - strain relations are simplified for the standard relaxa- 
tion test, and adjustable parameters are determined by matching re- 
laxation curves for polycarbonate in a wide range of temperatures. It 
is demonstrated that the model correctly predicts experimental data 
in static tests with various strains ranging from the region of linear 
viscoelasticity to the sub-yield domain. Temperature rather weakly 
affects parameters of the model: the most pronounced growth with 
T (about by twice) is observed in the coefficient C which characterizes 
the effect of mechanical factors on the position of the reference level. 
This means that coupling between Eqs. (13) and (14) may become 
essentially important in the sub-T, region. 
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